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METHOD AND SYSTEM FOR PROGRESSIVE
MESH STORAGE AND RECONSTRUCTION

USING WAVELET-ENCODED HEIGHT
FIELDS

RELATED APPLICATIONS

This application is a divisional patent application of U.S.
patent application Ser. No. 11/124,793, filed May 9, 2005,
now U.S. Pat. No. 7,680,350, which claims the benefit of 10

priority to U.S. Provisional Patent Application No. 60/569,
332, filed 7 May 2004, both of which are incorporated herein
by reference.

U.S. GOVERNMENT RIGHTS	 15

This invention was made with Government support under
contracts NAS5-01196 and NNL04AC32P awarded by
NASA. The Government has certain rights in this invention.

20

BACKGROUND

The following patents provide useful background informa-
tion and are incorporated herein by reference: U.S. Pat. No.
6,426,750; U.S. Pat. No. 6,208,997; U.S. Pat. No. 5,929,860; 25

and U.S. Pat. No. 5,831,625.
Other useful background information includes the follow-

ing articles: "Fast Terrain Rendering Using Geometrical Mip-
Mapping" by de Boer, W. H. (2000); "Compression of Digital
Elevation Maps Using Nonlinear Wavelets" by Creusere, C. 30

D. (2000); "Efficient Triangular Surface Approximations
Using Wavelets and Quadtree Data Structures" by Gross, M.
H., Staadt, O. G., and Gatti, R. (1996); `Adaptive Surface
Meshing and Multi-Resolution Terrain Depiction for SVS"
by Wiesemann, T., Schiefele, J., Kubbat, W., Proceedings 35

SPIE Vol. 4363 Enhanced and Synthetic Vision (August
2001); "Multi-Resolution Terrain Depiction and Airport
Navigation Function on an Embedded SVS" by Wiesemann,
T., Schiefele, J., Bader, J., Proceedings SPIE Vol. 4713
Enhanced and Synthetic Vision (July 2002); "WaveletAnaly- 40

sis for a New Multiresolution Model for Large-Scale Tex-
tured Terrains" by Abasolo, M. J., Perales, F. J., Journal of
WSCG, (2003); "Multiresolution Surface and Volume Rep-
resentations" by Staadt, O. G., Geometric modeling for Sci-
entific Visualization, Springer-Verlag, Heidelberg, Germany, 45

(2003); "Generation of Hierarchical Multiresolution terrain
Databases Using Wavelet Filtering" by McArthur, D. E.,
Fuentes, R. W., Devarajan, V., Photogrammetric Engineering
& Remote Sensing (2000); "Compression Methods for Visu-
alization" by Gross, M. H., Lippert, L., Staadt, O. G., Future 50

Generation Computer Systems, Vol. 15, No. 1 (1999); "Mul-
tiresolution Compression and Reconstruction", by Staadt, O.
G., Gross, M. H., Weber, R., Proceedings of IEEE Visualiza-
tion '97 (1997); "Fast Multiresolution Surface Meshing" by
Gross, M. H., Gatti, R., Staadt, O. G., 6th IEEE Visualization 55

Conference (1995).

SUMMARY

A method and system are provided for progressive mesh 60

storage and reconstruction using wavelet-encoded height
fields. A system so constructed may provide for full-mesh
storage of terrain elevation height field datasets, such as Digi-
tal Terrain Elevation Data ("DTED"), using wavelet-encoded
terrain height fields. The system may then retrieve, prepare
and render spatially-filtered, smoothly-continuous, level-of-
detail 3D terrain geometry.

2
In one embodiment, a method for progressive mesh storage

includes reading raster height field data, and processing the
raster height field data with a discrete wavelet transform to
generate wavelet-encoded height fields. Processing may
include processing the raster height field data into a quadtree
structure, and/or may include utilizing a wavelet subband
filter that may be one of the integer biorthogonal 5/3
Daubechies form and the biorthogonal 9/7 Daubechies form.

In another embodiment, a method for progressive mesh
storage includes reading texture map data, and processing the
texture map data with a discrete wavelet transform to generate
wavelet-encoded texture map fields. Processing may include
processing the texture map data into a quadtree structure,
and/or may include utilizing a wavelet subband filter that may
be one of the integer biorthogonal 5/3 Daubechies form and
the biorthogonal 9/7 Daubechies form.

In another embodiment, a method for reconstructing a pro-
gressive mesh from wavelet-encoded height field data
includes determining terrain blocks, and a level of detail
required for each terrain block, based upon a viewpoint. Tri-
angle strip constructs are generated from vertices of the ter-
rain blocks, and an image is rendered utilizing the triangle
strip constructs. Determining terrain blocks and/or the level
of detail required may include (a) evaluating distance of the
terrain blocks from the viewpoint, and/or (b) evaluating ori-
entation of the viewpoint with respect to the terrain blocks.
The method may include redetermining terrain blocks, and a
level of detail required for each terrain block, based upon a
change of the viewpoint. The method may include determin-
ing and unloading one or more unnecessary terrain blocks,
based upon a change of the viewpoint. The method may
include evaluating a distance parameter a for each terrain
block; and performing a geomorph, utilizing distance param-
eter a, on each terrain block. The method may include deter-
mining texture map blocks and a level of detail for each
texture map block, wherein the step of rendering comprises
utilizing the texture map blocks. The method may include
performing an edge-join operation to eliminate T junctions
where terrain blocks of differing levels of detail meet. The
image may include ancillary scene data. Each terrain block
may be divided into a field region and a trim region, so that
vertices of the field region may be transmitted as one triangle
strip construct and vertices of the trim region may be trans-
mitted as one or more additional triangle strip constructs.
Original height field minima and maxima may be preserved in
the wavelet-encoded height fields and the rendered image at
all levels of detail.

In another embodiment, a software product includes
instructions for progressive mesh storage, including instruc-
tions for (a) reading one of raster height field data and texture
map data as input data, and for (b) processing the input data
with a discrete wavelet transform to generate wavelet-en-
coded data.

In another embodiment, a software product includes
instructions for reconstructing a progressive mesh from
wavelet-encoded height field data, including instructions for
(a) determining terrain blocks, and a level of detail required
for each terrain block, based upon a viewpoint; for (b) gen-
erating one or more triangle strip constructs from vertices of
the terrain blocks; and for (c) rendering an image utilizing the
triangle strip constructs.

BRIEF DESCRIPTION OF THE FIGURES

65 FIG. 1A shows one exemplary system for progressive
mesh storage that processes raster height field data into wave-
let-encoded height fields.
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4
FIG. 1B shows one exemplary system for reconstruction	 can store data encoder software 20, raster height field data 22

using wavelet-encoded height fields.	 and wavelet-encoded height field data 24, as shown. Proces-
FIG. 2A shows a flowchart illustrating an exemplary pro- 	 sor 18 operates to load data encoder software 20 into memory

ces s that creates wavelet-encoded height field data from raster
	

14, as illustrated by dashed lines of loaded data encoder
height field data, and an exemplary run-time process that uses 5 software 20'. Processor 18 then executes loaded data encoder
wavelet-encoded height field data and location/orientation/

	
software 20' to process raster height field data 22, to produce

field-of-view data to produce output.	 wavelet-encoded height field data 24. A working set 26 that
FIG. 2B shows a flowchart illustrating one exemplary pro-	 may include part or all of raster height field data 22 may be

cess suitable for use as a step of the process of FIG. 2A, for	 created in memory 14 during the processing of raster height
processing terrain blocks and location/orientation/field-of-  io field data 22. Wavelet-encoded height field data 24 includes
view data to produce output. 	 terrain blocks at multiple levels of detail ("LOD") that may

FIG. 2C shows a flowchart illustrating one exemplary pro-	 also be indexed by spatial location (see FIG. 4). For example,
cess that uses wavelet-encoded height field data, wavelet

	
FIG. lA shows wavelet-encoded height field data 24 includ-

encoded texture map data, ancillary scene data and location/
	

ing an LOD 0 terrain block 25(1), LOD 1 terrain blocks
orientation/field-of-view data to produce output 	 15 25(2)-25(4), LOD 2 terrain blocks 25(5)-25(7), and other

FIG. 3 shows one flight-based 3D terrain rendering soft- 	 terrain blocks denoted by ellipsis.
ware system, illustrating functional software blocks suitable

	
Raster height field data 22 may include multiple files which

for progressive mesh storage and reconstruction using wave- 	 may cover different geographic areas and which may map
let-encoded height fields.	 different (adjacent or overlapping) areas with differing data

FIG. 4A and FIG. 4B illustrate relationships among wave-  20 densities (i.e., may have different numbers of data points per
let-encodedterrainblocks at various levels of detail ("LOD").	 unit area). For example, areas around airports may be mapped

FIG. 5A and FIG. 5B illustrate view frustum focused deter- 	 with higher data density than other areas. Data encoder soft-
mination of wavelet-encoded terrain blocks containing height 	 ware 20 may process raster height field data 22 that has high
data of an area for rendering a scene. 	 data density into wavelet-encoded height field data 24 that has

FIG. 6 illustrates omni -directional determination of wave-  25 more levels of detail, and raster height field data 22 that has
let-encoded terrain blocks containing height data of an area

	
low data density into wavelet-encoded height field data 24

for rendering a scene.	 that has fewer levels of detail. Wavelet-encoded height field
FIG. 7A illustrates a data preparation process for recon- 	 data 24 at a highest level of detail may include information

struction using terrain height fields.	 enabling an exact reconstruction of vertices of raster height
FIG. 7B illustrates a geomorphing process for reconstruc- 30 field data 22.

tion using terrain height fields.	 Processing of raster height field data 22 into wavelet-en-
FIG. 8 illustrates the steps performed in the processes of

	
coded height field data 24 may also compress the data. A

FIG. 7A and FIG. 7B from a terrain block data perspective. 	 lossless compression mode, such as provided by the revers-
FIG. 9A illustrates generation of triangle strips from a

	
ible integer biorthogonal 5/3 Daubechies form, typically cre-

terrain block.	 35 ates wavelet-encoded height field data that is compressed by
FIG. 9B illustrates initiation of a triangle strip from a 	 about 2:1 to 4:1 as compared to raster height field data. Lossy

portion of the terrain block of FIG. 9A.	 compression, such as provided by the irreversible biorthogo-
FIG. 10A illustrates a process of joining terrain blocks that	 nal 9/7 Daubechies form, may create wavelet-encoded height

have differing LOD. 	 field data that is compressed by about 10:1 to 50:1 as com-
FIG. 10B illustrates a composite terrain block that forms 40 pared to raster height field data. A compressionmode used for

when the terrain blocks of FIG. 1 O are joined. 	 a particular application may be chosen by evaluating
tradeoffs such as memory size, speed of reconstruction, and

DETAILED DESCRIPTION
	

tolerance in the application for visual errors that may result
from reconstruction of data compressed with a lossy com-

In certain of the progressive mesh storage and processing 45 pression mode.
systems and methods disclosed herein, particularly in con- 	 FIG. 1B shows one exemplary system 50 for reconstruction
nection with reconstruction using wavelet-encoded height	 using wavelet-encoded height fields, in accord with an
fields for three-dimensional (3D) computer graphics and 3D 	 embodiment. System 50 includes a computer 52 and an out-
terrain rendering, two general constructs may be employed. 	 put device 65; location/orientation/field-of-view data 70 is
First, regular x, y-matrix terrain height fields and texture data 50 shown being input to computer 52. Computer 52 is addition-
may be processed and stored in wavelet-encoded forms (i.e., 	 ally shown to include memory 54, a storage device 56, a
a terrain height field matrix and/or texture map data may be 	 processor 58 and a display processor 60. Storage device 56 is,
processed using a discrete wavelet transform ("DWT") and

	
for example, a hard disk drive. Storage device 56 is shown

the resulting data may be retained as source data for a 3D 	 with 3D run-time terrain renderer software 62 and wavelet-
terrain renderer). Second, a terrain block-based 3D terrain 55 encoded height field data 24 (which may be created by system
renderer (1) manages scene level-of-detail data requirements 	 10, FIG. 1A, for example). Wavelet-encoded height field data
depending on point of view, (2) reconstructs output from the 	 24 includes terrain blocks 25. Processor 58 operates to load
wavelet-encoded source data, scene requirements and regions 	 3D run-time terrain renderer software 62 into memory 54, as
of interest (current and/or projected), and optionally (3) pro- 	 illustrated by dashed lines of loaded 3D run-time terrain
cesses ancillary scene data to perform a complete 3D render- 6o renderer software 62'. 3D run-time terrain renderer software
ing of the resulting scene. 	 62 contains a scene manager 64 that loads into memory 54 as

For example, FIG. lA shows one exemplary system 10 for
	

loaded scene manager 64'. Processor 58 then executes loaded
progressive mesh storage that processes raster height field

	
3D run-time terrain renderer software 62' to process location/

data into wavelet-encoded height fields, in accord with an	 orientation/field-of-view data 70, load selected terrain blocks
embodiment. System 10 includes a computer 12 that, for 65 25 as loaded terrain blocks 25' in a working set 66, and
example, has a memory 14, a storage device 16 and a proces- 	 process loaded terrain blocks 25' to produce an output display
sor 18. Storage device 16 is for example a hard disk drive, and

	
signal 68 via display processor 60 (where terrain blocks 25
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and 25' denote general cases of terrain blocks 25(1),
25(2).... and 25(1)', 25(2)', ... , respectively, as shown in
FIG. 113). Not every terrain block 25 of wavelet-encoded
height field data 24 typically loads into working set 66 (e.g.,
FIG. 1B shows terrain blocks 25(1)', 25(2)', 25(4)', 25(6)',
25(10)', and others denoted by ellipsis, but not terrain blocks
25(3)', 25(5)' or 25(7)'-25(9)', for example). Working set 66
may also contain other kinds of data (see FIG. 2C). Display
processor 60 may be, for example, a Graphics Processing
Unit ("GPU"). Output 68 may be utilized by an output device
65 that may be, for example, a visual display, a printer, a
plotter or a Web client. Location/orientation/field-of-view
data 70 may be, for example, (1) received from an aircraft
navigation computer, (2) received from a Web client, defining
a view desired on output device 65, or (3) received from an
input device or devices.

FIG. 2A shows a flowchart illustrating (1) an exemplary
process 100 that creates wavelet-encoded height field data 24
from raster height field data 22 and (2) an exemplary process
106 that uses wavelet-encoded height field data 24 and loca-
tion/orientation/field-of-view data 70 to produce output 68, in
accord with an embodiment.

Discrete wavelet transform 104 of process 100 converts
raster height field data 22 (which is, for example, raw terrain
elevation data) into wavelet encoded height field data 24,
utilizing sub-band decomposition. Process 100 is, for
example, a pre-processing step to produce data 24, and may
occur only once.

Process 106 is for example performed by computer 52
under the control of loaded 3D run-time terrain renderer
software 62', FIG. 1B. In step 108, loaded scene manager 64'
directs computer 52 utilizing location/orientation/field-of-
view data 70 to identify, within wavelet-encoded height field
data 24, terrain blocks 25 utilized at each LOD to produce
output 68. In step 110, process 106 loads identified terrain
blocks 25 from wavelet-encoded height field data 24 as
loaded terrain blocks 25' of working set 66, FIG. 1B. In step
112, process 106 renders output 68 utilizing loaded terrain
blocks 25' and location/orientation/field-of-view data 70, as
directed by loaded scene manager 64'.

FIG. 2B shows a flowchart illustrating one exemplary pro-
cess 150 suitable for use as step 112 of process 106, FIG. 2A,
for processing terrain blocks (e.g., loaded terrain blocks 25)
and location/orientation/field-of-view data 70 to produce out-
put 68. Process 150 may be performed by computer 52 under
control of loaded 3D run-time terrain renderer software 62',
for example. Wavelet-encoded height field data 24, step 110
of process 106, and display output 68 are shown with dashed
lines to illustrate processing context of process 150.

In step 156, process 150 performs a geomorph on terrain-
blocks loaded in step 108 of process 106. The geomorph
eliminates vertex `popping' artifacts on display output 68 by
smoothly interpolating geometries of terrain-blocks loaded in
step 108 (see also FIG. 7A, FIG. 7B and FIG. 8). In step 158,
process 150 performs an edge join operation to correct
anomalies where terrain blocks of differing LOD j oin. In step
160, process 150 organizes working set 26 into a triangle strip
construct for rendering. In step 162, process 150 outputs the
triangle strip construct to display processor 20, FIG. 1.In step
164, display processor 20 utilizes the triangle strip construct
to render a 3D image, to produce output 68. It will be appre-
ciated that certain steps of process 150 may be performed in
a different order than the order listed; for example, step 160
may precede step 158, or steps 160 and steps 162 may be
performed concurrently, in certain applications.

FIG. 2C shows a flowchart illustrating one exemplary pro-
cess 206 that uses wavelet-encoded height field data 24,

6
wavelet encoded texture map data 170, ancillary scene data
174 and location/orientation/field-of-view data 70 to produce
output 68, in accord with an embodiment. Like process 106,
process 206 is for example performed by computer 52 under

5 the control of loaded 3D run-time terrain renderer software
62', FIG. 1B. While process 106 renders a 3D terrain height
image, process 206 adds texture information and ancillary
scene data for increased realism and usefulness of output 68.
Raw texture map data is analogous to raster height field data

io 22, FIG. 1A; a process that produces wavelet encoded texture
map data 170 is analogous to process 100, FIG. 2A; wavelet-
encoded texture map data 170 is analogous to wavelet-en-
coded height field data 24, FIG. 1B. Ancillary scene data may
include flight-aid graphical elements and/or icons that may

15 provide additional flight situational awareness when depicted
within a rendered scene context in output 68 (see also FIG. 3).

In step 208, loaded scene manager 64' directs computer 52
utilizing location/orientation/field-of-view data 70 to identify
(a) specific terrain blocks 25 within wavelet-encoded height

20 field data 24 and (b) texture blocks within wavelet encoded
texture map data 170, that are required at each LOD to pro-
duce output 68. In step 210, process 206 loads identified
terrainblocks 25 and identified terrain blocks into working set
66, FIG. 1B. In step 212, process 206 renders output 68

25 utilizing loaded terrain blocks 25', loaded texture blocks,
ancillary scene data 174, and location/orientation/field-of-
view data 70, as directed by loaded scene manager 64'.

Wavelet-Encoded, Multiple-Level-of-Detail Terrain Data

30 Storage
Typically, raster height field data 22, FIG. 1A, originates as

a raster-ordered, regular matrix of values where each value
represents the height of terrain at a particular x, y location; it
is thus a parametric surface whereby height is a function of

35 the x and y coordinates. Height values are typically formatted
as a signed 16-bit integer, although, alternatively, larger inte-
ger or floating point formats may be used as required by a
particular application. In one embodiment, system 10 pro-
cesses raster height field data 22 into a wavelet-encoded form

40 using a DWT yielding a resulting dataset (e.g., wavelet-en-
coded height field data 24) as source data for loaded 3D
run-time terrain renderer software 62'. Texture map data typi-
cally originates as a raster-ordered regular matrix of pixels
(e.g., an image). Each pixel of the texture map image may be,

45 for example, composed of an 8-bit red value, an 8-bit green
value, and an 8-bit blue value (i.e., a 24-bit Red-Green Blue
"RGB" color pixel). Texture map data typically originates as
raster image data at a higher level of detail than terrain data
22, but it may originate at the same, or a lower, level of detail

50 than terrain data 22. In one embodiment, system 10 processes
raster texture map data into a wavelet-encoded form using a
DWT yielding a resulting dataset (e.g., wavelet-encoded tex-
ture map data 170) as source data for loaded 3D run-time
terrain renderer software 62'. Ancillary scene data 174 may be

55 stored as an arbitrary list of numeric geometric object
descriptions that may include x, y, z vertices, may be associ-
ated with x, y, z object points, areas, or volumes in space, and
may represent general cartographic features and fixed items
(e.g., towers, buildings, runways), movable items (e.g.,

60 vehicles, aircraft) or flight-path or vehicle passage corridor
representations (e.g., indications of the intended paths of
aircraft and/or land vehicles). Loaded scene manager 64' may
determine when a specific item of ancillary scene data 174
should be included in output 68.

65 FIG. 3 shows one flight-based 3D terrain rendering soft-
ware system 300, illustrating functional software blocks suit-
able for progressive mesh storage and reconstruction using
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wavelet-encoded height fields, in accord with an embodi-
ment. System 300 includes a synthetic vision ("SV") flight
application 310 that may be, for example, software that
directs a computer (e.g., computer 52, FIG. 113) aboard an
aircraft. Flight application 310 is in communication with a
flight terrain renderer applications program interface ("API")
320 that includes an LOD processor and wavelet quadtree
data structure manager 350 and a scene manager 360. API 320
also includes a viewpoint processor and data access predictor
330 that receives location/orientation/FOV data 70, a wavelet
terrain data LOD loader 340 that receives wavelet-encoded
terrain data 24, a wavelet texture map data LOD loader 344
that receives wavelet-encoded texture map 170, and an ancil-
lary scene data loader 348 that receives ancillary scene data
174. Flight application 310 and API 320 are in communica-
tion with a Graphical User Interface ("GUI")/Display layer
API 370. API 320 and API 370 generate output that is
received by a Graphics Processor Unit ("GPU") 390 via a
graphics device driver 380, such as an OpenGL driver, which
processes the output into a format recognized by GPU 390.
GPU 390 processes data received from API 320 and API 370
via driver 380 to produce output (e.g., output 68, not shown)
that may be displayed, for example, on one or more monitors
of an aircraft.

One advantage of using a wavelet-encoded form of terrain
data may be to provide a compact, multiple-level-of-detail
representation of the original data (see, e.g., FIG. 4). Wavelet
encoding of raster height field data 22 to produce wavelet-
encoded terrain height field data 24 generates a plurality of
spatially-filtered levels of detail, similar to texture mipmap-
ping. The DWT uses digital sub-band filters to decompose
raster height field data 22 into groups of components, namely
a low-frequency component and high-frequency components
in the y-, x-, and xy-directions.

FIG. 4A and FIG. 4B illustrate relationships among wave-
let-encoded terrain blocks 25 at various LOD, in accord with
an embodiment. The DWT process breaks the original data
into powers-of-2-sized blocks containing spatial detail to a
given LOD, where each block at a higher LOD contains
high-frequency components to increase LOD of a recon-
structed image, compared to blocks of lower LOD. In FIG. 4A
and FIG. 413, a data set 300 includes only terrain block 25(1)
at LOD 0. Data set 305 includes data set 300 and additional
terrain blocks 25(2), 25(3) and 25(4) that contain y-direction,
x-direction, and xy-direction information, respectively, at
LOD 1 for the terrain represented by terrain block 25(1). Data
set 310 includes data set 305 and additional terrain blocks
25(5), 25(6) and 25(7) that contain y-direction, x-direction,
and xy-direction information, respectively, at LOD 2 for the
terrain represented by terrain block 25(1). Data set 315
includes data set 310 and additional terrain blocks 25(8),
25(9) and 25(10) at LOD 3.

Only four LOD levels are shown in FIG. 4A and FIG. 413,
for clarity of illustration; though additional possible LOD
levels are suggested by ellipsis 316. The number of levels
used in a DWT process may be arbitrary, though they may
depend upon source image size and a smallest reconstructable
block size. Each level may create, for example, x-direction,
y-direction, and xy-direction detail for a 1/2-size (in each axis)
LOD+1 block of the preceding level (e.g., LODn is the full-
size image, LODn-1 is 1/2 size, LODn-2 is 1/4 size, and so on,
down to LODO that represents the lowest level of detail rep-
resentation of the original source data). The number of levels
used in wavelet decomposition may therefore be described as
a function of source height field size and the smallest desired
reconstructable terrain block size, as follows:

8
DWT levels=log2 (Height Field Edge Length)—loge

(Terrain Block Edge Length)+1

As wavelet decomposition stores data as the smallest size
image (sometimes denoted herein as a "DC component"),

5 with each ascending level's high-frequency information
(sometimes denoted herein as AC components"), the next-
highest LOD may be generated. For instance, a 6-level wave-
let decomposition has a '/25 , or '/32 size image as its lowest
LODO form along with the successive high-frequency com-

10 ponents for the'/6, '/s 1/4 '/z and full-size image LODs. See,
e.g., FIG. 4A and FIG. 4B. The wavelet subband filters used
are those of the reversible (lossless) integer biorthogonal 5/3
Daubechies form and the irreversible (lossy) biorthogonal 9/7
Daubechies form, although the use of other wavelet subband

15 filters, such as those with minima- and maxima-preserving
characteristics, is contemplated and may be more appropriate
for some applications. The wavelet-transformed height field
is partitioned and indexed into spatially-contiguous blocks
providing for efficient access to arbitrary LODs and spatial

20 regions of interest.
A further illustration showing a 3-level wavelet decompo-

sition of a 16-bit terrain height field into three resolution
levels may be seen in FIGS. 5, 6, 7 of U.S. Provisional Patent
Application No. 60/569,332, which is incorporated herein by

25 reference.
The wavelet-encoding process efficiently stores multi-

LOD forms of an image, for example using the encoded
"image" as the 16-bit-per-height raster height field. When
levels at one LOD are each one-half the size in each axis of a

30 next higher LOD, the data may form an LOD quadtree data
structure; each height field block at one LOD corresponding
with four height field blocks in the next highest LOD.

For an 8-level, wavelet-encoded height field with a 64x64
minimum terrain-block size, the following number of terrain-

35 block grids and total height field size for the LOD may be
given:

40 LOD level Grid of 64 x 64 terrain blocks Total LOD height field size

LODO 1 x 1 64 x 64
LOD1 2 x 2 128 x 128
LOD2 4x4 256 x 256
LOD3 8x8 512x512
LOD4 16 x 16 1024 x 1024 

45 LOD5 32 x 32 2048 x 2048
LOD6 64 x 64 4096 x 4096
LOD7 128 x 128 8092 x 8092

Although the resulting wavelet-encoded data may include
So only height values, the sequence of the height values within

the wavelet-encoded data allows for efficient reconstruction
of a complete 3D x, y, z height vertex representation, elimi-
nating the need to store full x, y, and z coordinates for each

55 
height value.

3D Terrain Block Renderer
In one embodiment, terrain rendering by system 50, FIG.

113, processes terrain data primarily as blocks of data, rather
than as individual terrain vertices. The wavelet-encoded for-

60 mat of terrain data (e.g., wavelet-encoded height field data 24
as discussed in the preceding section) provides needed terrain
blocks at needed LOD at run time. Under the control of loaded
scene manager 64', system 50 sets up a scene and determines
which terrain blocks are necessary to provide detail at various

65 depths in the scene relative to a viewpoint. For instance,
foreground terrain may be rendered using high-LOD blocks,
whereas background terrain may utilize low-LOD blocks of
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terrain data. Regardless of LOD, all blocks may have the same
number of vertices; because of the quadtree data structure of
the wavelet-encoded terrain data, the spatial dimensions of a
block may be one-half (in each axis) the size of a block at a
lower LOD. Thus, a number of vertices in a scene is moder- 5

ated block by block rather than vertex by vertex, conserving
considerable central processor unit (CPU) effort. Certain pro-
cessing may be performed vertex by vertex, such as geomor-
phing and generation of triangle strips, as discussed below.

FIG. 5A illustrates view frustum focused determination of 10

wavelet-encoded terrain blocks 25 containing height data of
an area 400 for rendering a scene, in accord with an embodi-
ment. A desired viewpoint 410 is provided as part of location/
orientation/FOV data 70; loaded scene manager 64' uses data
70 to generate a view frustum 420, in this example, to identify is
terrain blocks 25 with varying LOD based on distance of each
terrain block from viewpoint 410. Only some terrain blocks
25 are labeled within FIG. 5 for clarity of illustration. Terrain
blocks 25(20) at a distance from viewpoint 410, or signifi-
cantly outside view frustum 420, are at a low LOD (here 20

denoted LOD n). Terrain blocks 25(21) that are closer to
viewpoint 410 (e.g., closer to viewpoint 410 than about line
422) are at LOD n+l. Terrain blocks 25(22) that are still
closer to viewpoint 410, and terrain blocks 25(23) that are still
closer to viewpoint 410 are not labeled within FIG. 5B for 25

clarity of illustration; a region labeled 5B is shown in FIG. 513,
showing terrain blocks 25(22) and 25(23). The use of four
LODs in FIG. 5A is illustrative only; more or fewer LODs
may be used, with the distances utilized to determine loading
of each LOD demarked by a correspondingly larger set of so
lines (e.g., like lines 422, 424 and 426). It should be apparent
that the number of LODs may be arbitrarily large, limited
only by a density of the raster data that is processed to form
wavelet encoded terrain blocks 25. At a highest level of detail,
wavelet-encoded height field data 24 may include informa- s5

tion that enables exact reconstruction of a scene to the level of
detail stored in raster height field data 22.

FIG. 5B is an enlarged illustration of region 5B of FIG. 5A.
Terrain blocks 25(22) that are closer to viewpoint 410 than 40
about line 424 are at LOD n+2 (compared to the LOD of
blocks 25(20) and 25(21) of FIG. 5A); Terrain blocks 25(23)
that are closer to viewpoint 410 than about line 426 are at
LOD n+3.

The example shown in FIG. 5A and FIG. 5B illustrates 45
only one way that terrain blocks of specific spatial areas and
LOD may be identified. In FIG. 5A and FIG. 5B blocks in or
near view frustum 420 are preferentially loaded, or loaded at
higher LOD, as compared to blocks that are significantly
outside view frustum 420. Other embodiments may utilize 50
different methods of loading terrain blocks corresponding
with specific spatial areas and LOD.

FIG. 6 illustrates omni -directional determination of wave-
let-encoded terrain blocks 25 containing height data of an
area 450 forrendering a scene, in accord with an embodiment. 55

The example of FIG. 6 loads an omni-directional ("bomb
blast") pattern of blocks 25 based on a location of a viewpoint
460. The "bomb blast" pattern utilizes only distance from
viewpoint 460 to determine an LOD at which a given terrain
block 25 is loaded. For example, in FIG. 6, terrain blocks 25 60

that correspond to locations within about a small distance
from viewpoint 460 (indicated by a line 476) are loaded at
LOD n+2 as terrain blocks 25(22). Terrain blocks 25 that
correspond to locations within about a larger distance from
viewpoint 460 (indicated by an area between line 476 and line 65

474) are loaded at LOD n+I as terrain blocks 25(21). Terrain
blocks 25 that correspond with locations within about a still

10
larger distance from viewpoint 460 (indicated by an area
between line 474 and line 472) are loaded at LOD n as terrain
blocks 25(20).

While the pattern illustrated in FIG. 5 loads spatial areas
within or near view frustum 410 at higher LOD than areas that
are not within or near view frustum 410, the "bomb blast"
pattern illustrated in FIG. 6 may load data at a given LOD in
all directions from viewpoint 460. Loading at least some data,
or loading data at a higher LOD, in directions that are not
within a current view frustum may facilitate transitions
wherein the view frustum moves (e.g., because an aircraft
changes course, or because a user looks in a different direc-
tion). Other schemes for identifying terrain blocks at specific
spatial locations and/or LOD for loading may be used. One
such scheme identifies terrain blocks based on recent aircraft
movements; for example, if an aircraft has been turning right,
terrain blocks to the right of the center of the current view
frustum may be loaded at higher LOD. In another example, a
scheme identifies terrain blocks based on a predetermined
flight plan.

In one embodiment, system 50 accesses terrain blocks at
varied levels of detail from wavelet-encoded source data,
depending on viewpoint location and/or orientation; but it
does not cull out individual vertices based on the viewpoint.
Reconstructed terrain blocks are LOD-filtered and scaled by
the wavelet decomposition process to eliminate further ver-
tex-by-vertex processing. Such terrain rendering may there-
fore represent a hybrid between a View Independent Progres-
sive Mesh (VIPM) and a View Dependent Progressive Mesh
(VDPM) methodology; except run-time processing perfor-
mance of a VDPM approach (minimized triangle count at
run-time based on viewpoint) is achieved without the vertex-
by-vertex CPU processing overhead required by other VDPM
approaches.

System 50 of FIG. 1B may for example utilize wavelet-
encoded height field data 24 that forms a quadtree structure to
facilitate tracking of terrain block levels of detail and to
determine, based on viewpoint distance to each block, for
example, a required terrain block LOD per a view-space error
metric. A quadtree structure may facilitate identification of
terrain blocks 25 used for a current scene. Only identified
terrain blocks 25 are loaded into system memory (e.g., into
working set 66, FIG. 113) for rendering. As additional detail is
required for a particular spatial area within a scene, the asso-
ciated terrain block "splits" into four higher-LOD blocks
(e.g., referring to FIG. 4, additional x-direction, y-direction
and xy-direction data, that corresponds with an existing lower
LOD block, is loaded). Also, blocks deemed unnecessary for
the current scene are unloaded from memory in a data culling
process, to eliminate unnecessary wavelet-encoded terrain-
block data accesses and terrain-block rendering processes
outside of the view angle. A quadtree structure may also
facilitate data culling.

Terrain blocks 25 may form a wavelet-encoded height field
such that x and y locations of each data point may only be
implicit, based on sequence of data points within a block,
providing a compact height field format for terrain geometry
storage and vertex processing. Processes may be used, for
example, to convert a scene's terrain block height fields to a
smoothly-continuous and efficiently-renderable form. Such
processes may be: (a) geomorphing of terrain block height
values to provide smooth switching between LOD levels, (b)
appending x- and y-axis values to each height value to create
a true 3D vertex, (c) arranging the vertices of each terrain
block into triangle strips for efficient processing by a typical
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12
hardware Graphics Processor Unit (GPU) while (d) tying

	
line 426. The exact value of a assigned to each block is

edge vertices between adjacent terrain blocks with differing
	

determined from the average distance of the block from view-
LOD. See also FIG. 2B.	 point 410.

Inprocess (a), the heightvalues of each terrain block 25 are
	

Process 550 begins with delta block 535 having been cre-
geomorphed to provide smooth height transitions between 5 ated (e.g., by step 540 process 500) and with a determined in
terrain block levels of detail. Since wavelet decomposition 	 step 560. Step 570 scales each data point 545 of delta block
process removes spatial components as LOD decreases, 	 535 by multiplying it by a. Step 580 subtracts the scaled
height values of blocks at varying LODs may vary, represent- 	 values from the corresponding data points 525 of terrain
ing the actual spatially filtered height value at each LOD. 	 block 25(26), to create a rendered block 575. Thus, geomor-
Geomorphing linearly varies height values of an entire terrain io phing process 550 provides linear height value interpolation
block 25 based on a distance of a viewpoint from the block. A

	
between reconstructed terrain block LODs, yielding continu-

"lifespan" may be attributed to a spatial area at a particular 	 ous and spatially-filtered terrain heights as seen from view-
LOD: additional terrain blocks 25 must be loaded to add

	
point 410. Process 550 may be repeated each time viewpoint

detail for the area (corresponding to an increasing LOD) for
	

410 moves within scene 400 (because the movement of view-
an approaching viewpoint; terrain blocks may be deleted 15 point 410 changes a).
(corresponding to lower LOD) for a receding viewpoint. Geo- 	 FIG. 8 illustrates the steps performed in processes 500 and
morphing varies height values of terrain blocks 25 smoothly;

	
550 from a terrain block data perspective. Terrain block

accordingly, displayed output does not abruptly change,	 25(25)' is created from LOD n terrainblock25(25) in step 520
which can cause "vertex popping" artifacts, when a spatial

	
by adding interpolated data points 517 to the original data

area switches from one LOD to another.	 20 points 515 of terrain block 25(25). After LOD n+1 terrain
FIG. 7A illustrates a data preparation process 500 for

	
block 25(26) is loaded in step 530, delta block 535 is created

reconstruction using terrain height fields. Process 500 may be
	

in step 540 by subtracting each data point 515 or 517 of terrain
used, for example, as part of process 110 of FIG. 2A and FIG.	 block 25(25)' from a corresponding data point 525 of terrain
213, and is for example performed by computer 52 under the

	
block 25(26). After a for a specific scene is determined for

control of loaded 3D run-time terrain renderer software 62', 25 block 25(26), each data point 545 of delta block 535 is first
FIG. 1B. Process 500 creates a delta block 535 of data (see 	 multiplied by a in step 570, then subtracted from a corre-
also FIG. 8) to hold differences between height values 	 sponding data point 525 of terrain block 25(26) to create
between a terrain block 25(25) at one LOD (LOD n) and

	
rendered block 575 in step 580.

another terrain block 25(26) at a higher LOD (LOD n+1). 	 In process (b), height values with implicit x and y locations
Process 500 begins with terrain block 25(25) already loaded 30 within the terrain block are converted to explicit 3D vertices
into memory (e.g., memory 54, FIG. 1B)instep510. Step 520

	
having floating point x, y, and z coordinate values. The raster

creates an expanded terrain block 25(25)' that includes each
	

x and y coordinates become the 3D vertex x and z coordinates,
data point 515 of terrain block 25(25), and includes data 	 respectively. The corresponding height value becomes the y
points 517 that correspond to positions between each pair of

	
coordinate. Since location of a terrain block 25 within a scene

data points in terrain block 25(25). Data points 517 are cre- 35 (e.g., scene 400) is known, offset values may be added to
ated by interpolating data points 515. Expanded terrain block

	
convert x and y coordinates of each height value within terrain

25(25)' thus includes the number of data points that are
	

block 25 to 3D x and z coordinates.
included in a terrain block at LOD n+1. Step 530 loads terrain

	
In process (c), vertices are transmitted to a GPU as a set of

block 25(26) into memory. Step 540 creates delta block 535;	 one or more packed triangle strip constructs. FIG. 9A illus-
each data point 545 of delta block 535 corresponds to a 40 trates generation of triangle strips from a terrain block 25(3 0).
difference between each data point 525 in terrain block

	
A triangle strip may be, for example, a list of vertices wherein

25(26) and the corresponding data point 515 or 517 in
	

it is understood by a GPU that each of the last three vertices in
expanded terrain block 25(25)'. Process 500 may be used each

	
the list at any time represents a triangle to be rendered; each

time a block of higher LOD data is loaded into memory, to	 new vertex added to the list forms a triangle with the two
create delta blocks that are used during geomorphing, as 45 vertices that preceded it. Terrain block 25(30) maybe divided
described below. 	 into a field area 600 that contains all internal vertices 620 of

FIG. 7B illustrates a geomorphing process 550 for recon- 	 block 25(30), and a trim area 610 that contains external ver-
struction using terrain height fields. Because the terrain ren- 	 tices 630 (for example, external vertices 630 may be single
dering process is block based, a computer (e.g., computer 52)

	
rows and columns of vertices on the perimeter of block

may evaluate a viewpoint-to-block distance parameter a for 50 25(30)). Dashed line 605 illustratively separates field area
each terrain block 25 rather than for each height value (ver- 	 600 from trim area 610 in FIG. 9A. Arrows 602 indicate the
tex) for LOD determination, reducing CPU involvement in 	 general progression of triangle strip formation through field
the rendering process. Process 550 is a linear height adjust- 	 area 600; arrows 612 indicate the general progression of
ment utilizing distance parameter a that is scaled to a value 	 triangle strip formation through trim area 610. Not all vertices
between 0.0 and about 1.0 depending on distance of a terrain 55 620, 630 of terrain block 25(30) or all arrows 602, 612 are
block 25 from a viewpoint (e.g., viewpoint 410 or viewpoint

	
labeled, for clarity of illustration.

460, see FIG. 5 and FIG. 6) relative to terrain blocks 25 of a
	

Vertices 620 of field area 600 may be transmitted to a GPU
greater or lesser LOD. 	 as a single triangle strip. FIG. 9B illustrates initiation of a

For example, in FIG. 513, terrain blocks 25(23) that are 	 triangle strip from a portion of terrain block 25(30). The
adjacent to terrain blocks 25(22) near line 426 should be 60 vertices that form the beginning of the triangle strip are num-
scaled the same. This may be accomplished by assigning an a

	
bered in the order that they are transmitted. Vertices Vl, V2

of about 1.0 to terrain blocks 25(3) near line 426, and assign-	 and V3 form the first triangle in the strip; vertices V2, V3 and
ing an a of about 0.0 to terrain blocks 25(3) near line 426.	 V4 form the second triangle, and so forth until vertex V12 is
Likewise, terrain blocks 25(22) that are adjacent to terrain 	 transmitted. After vertex V12, the triangle strip cannot con-
blocks 25(21) near line 424 may be scaled the same, so an a 65 tinue with the vertices labeled V14, V15 and V16, because
of about 1.0 is assigned to terrain blocks 25(2) near line 424, 	 transmitting vertex V14 after vertex V12 would result in the
and an a of about 0.0 is assigned to terrain blocks 25(1) near 	 rendering of a triangle consisting of vertices Vll, V12 and
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V14, which is not desired. Instead, vertex V12 is transmitted
again as vertex V13, forming a degenerate triangle composed
of vertices V11, V12 and V13. Next, vertex V14 is transmit-
ted, forming a degenerate triangle composed of vertices V12,
V13 and V14. Next, vertex V14 is transmitted again as vertex
V15, forming a degenerate triangle composed of vertices
V13, V14 and V15. Next, vertex V16 is transmitted, forming
a degenerate triangle composed of vertices V14, V15 and
V16. The degenerate triangles may be rendered by the graph-
ics processor, but have zero size, so they do not appear as
output. Vertex V17 is transmitted after vertex V16, to form a
triangle composed of vertices V15, V16 and V17, to restart the
regular formation of triangles across terrain block 25(30) in
the direction of arrows 602, continuing with vertices V18 and
V19, as shown.

Other sequences of vertex output may be used in place of
the specific sequence listed above, depending for example on
specific GPU or GPU driver requirements. Vertex sequencing
may occur in a different order, or differing sequences of
vertex output may form degenerate triangles in a different
number or position than those described above. Transmission
of the last vertex in field area 600 may terminate a triangle
strip.

Trim areas are converted to triangle strips in a similar
manner as field edges; however, triangle stripping of trim
areas may involve reconciliation of edge effects that may
form when, for example, a terrain block is adjacent to a terrain
block of a differing LOD. Terrain blocks 25 of one LOD that
adjoin terrain blocks 25 of a lower LOD may form T junctions
in the terrain mesh, leaving visual gaps in the subsequent
rendering process. To provide a continuous terrain mesh,
T junctions are removed using a vertex-collapse technique.

FIG. 10A illustrates a process of joining terrain blocks
25(31) and 25(32) that have differing LOD. Vertices V20 and
V21 of terrain block 25(31) are removed to eliminate T junc-
tions. FIG. 10B illustrates a composite terrain block 650 that
forms when terrain blocks 25(31) and 25(32) are j oined. Field
areas 655 and 660 are converted to triangle strips as described
above, and trim areas are converted to triangle strips along the
paths of arrows 665 and 670. Specific vertices may be trans-
mitted so that the triangles indicated by solid lines in FIG.
10B are rendered, with certain vertices transmitted multiple
times so that degenerate triangles form, to prevent unintended
triangles from rendering.

Changes may be made in the above methods and systems
without departing from the scope hereof. It should thus be
noted that the matter contained in the above description or
shown in the accompanying drawings should be interpreted
as illustrative and not in a limiting sense. The following
claims are intended to cover all generic and specific features
described herein, as well as all statements of the scope of the
present method and system, which, as a matter of language,
might be said to fall there between. It should therefore be
apparent that the disclosed systems and methods may be
altered without departing from the scope hereof, including the
following claims. Such alterations may for example include:

The discrete wavelet transform used to process the original
height field data may be operated in either a lossless or
lossy mode.

The wavelet encoding process used to reconstruct terrain
blocks from the wavelet-encoded data may be such that
original height field minima and maxima are preserved
in the reconstructed data at all levels of detail.

A sparse height field reconstruction approach may be used
wherein high-frequency wavelet coefficients are exam-
ined at run time, and coefficients indicating low energy
content are used as an indicator for removing certain
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vertices from a reconstructed terrain block. Removing
vertices reduces the terrain block vertex count, and
remaining vertices are triangulated in the triangle strip-
ping process.

5 The wavelet-encoded terrain data may be physically sepa-
rated from the 3D terrain-block renderer and intercon-
nected via a networked interface.

Any mesh structure describable by a height field may be
processed by the systems and methods above.

10	 Terrain block size is not limited to a 64x64 size but may be
optimized to GPU hardware capabilities.

The discrete wavelet transform used to process the original
height field data may use other wavelet subband filters.

15	 What is claimed is:
1. A method of reconstructing a progressive mesh from

received height field data, comprising the steps of:
determining necessary terrain blocks, and a level of detail

required for each of the terrain blocks, based upon a
20	 viewpoint;

converting the received height field data within each of the
terrain blocks into a regular grid of vertices;

generating one or more triangle strip constructs from the
regular grid of vertices in at least one of the terrain

25	 blocks; and
rendering an image utilizing the triangle strip constructs,
wherein the one or more triangle strip constructs each

comprises a sequential series of triangles, each triangle
having a first, second, and third vertex from the regular

30	 grid of vertices, and
wherein the second and third vertex of a first triangle in the

sequential series are preserved to automatically be the
first and second vertex, respectively, of a triangle imme-
diately following the first triangle.

35 2. The method of claim 1, wherein the step of determining
terrain blocks further comprises evaluating distance of one or
more terrain blocks from the viewpoint.

3. The method of claim 1, wherein the step of determining
terrain blocks further comprises evaluating orientation of the

40 viewpoint with respect to one or more terrain blocks.
4. The method of claim 1, wherein the step of determining

a level of detail further comprises evaluating distance of one
or more terrain blocks from the viewpoint.

5. The method of claim 1, wherein the step of determining
4s a level of detail further comprises evaluating orientation of

the viewpoint with respect to one or more terrain blocks.
6. The method of claim 1, further comprising a step of

redetermining terrain blocks, and a level of detail required for

50 
each terrain block, based upon a change of the viewpoint.

7. The method of claim 1, further comprising a step of
determining and unloading one or more unnecessary terrain
blocks, based upon a change of the viewpoint.

8. The method of claim 1, further comprising the steps of:

55	
evaluating a distance parameter a for each terrain block;

and
performing a geomorph, utilizing distance parameter a, on

each terrain block.
9. The method of claim 1, further comprising the step of

60 determining texture map blocks and a level of detail for each
texture map block, wherein the step of rendering further com-
prises utilizing the texture map blocks.

10. The method of claim 1, further comprising a step of
performing an edge-join operation to eliminate T junctions

65 where terrain blocks of differing levels of detail meet.
11. The method of claim 1, wherein the step of rendering

further comprises utilizing ancillary scene data.
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12. The method of claim 1, wherein the step of generating
further comprises the steps of:

determining a field region and a trim region of each terrain
block;

transmitting vertices of the field region as one triangle strip 5

construct; and
transmitting vertices of the trim region as one or more

triangle strip constructs.
13. The method of claim 1, wherein original height field

minima and maxima are preserved in the image at all levels of io
detail.

14. The method of claim 1, further comprising the step of
removing vertices that correspond to low energy content of
high-frequency wavelet coefficients from the terrain blocks.

15. A software product comprising instructions, stored on 15

a tangible computer-readable medium, wherein the instruc-
tions, when executed by a computer, perform steps for recon-
structing a progressive mesh from received height field data,
comprising:

determining necessary terrain blocks, and a level of detail 20

required for each of the terrain blocks, based upon a
viewpoint;

16
converting the received height field data within each of the

terrain blocks into a regular grid of vertices;
generating one or more triangle strip constructs from the

regular grid of vertices in at least one of the terrain
blocks; and

rendering an image utilizing the triangle strip constructs,
wherein the one or more triangle strip constructs each

comprises a sequential series of triangles, each triangle
having a first, second, and third vertex from the regular
grid of vertices, and

wherein the second and third vertex of a first triangle in the
sequential series are preserved to automatically be the
first and second vertex, respectively, of a triangle imme-
diately following the first triangle.

16. The method of claim 1, wherein the received height
field data is wavelet-encoded.

17. The method of claim 1, wherein the terrain blocks are
organized according to a quadtree data structure.
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